{"@context":"http://iiif.io/api/presentation/2/context.json","@id":"https://repo.library.stonybrook.edu/cantaloupe/iiif/2/manifest.json","@type":"sc:Manifest","label":"Optical Forces on Metastable Helium","metadata":[{"label":"dc.description.sponsorship","value":"This work is sponsored by the Stony Brook University Graduate School in compliance with the requirements for completion of degree."},{"label":"dc.format","value":"Monograph"},{"label":"dc.format.medium","value":"Electronic Resource"},{"label":"dc.identifier.uri","value":"http://hdl.handle.net/11401/76689"},{"label":"dc.language.iso","value":"en_US"},{"label":"dc.publisher","value":"The Graduate School, Stony Brook University: Stony Brook, NY."},{"label":"dcterms.abstract","value":"Optical forces using lasers allow precise control over the motion of atoms. The bichromatic optical force (BF) is unique in its large magnitude and velocity range, arising from the absorption and stimulated emission processes. These properties were used to transversely collimate a beam of metastable helium (He∗ ) using the 2^{3}S − 2^{3}P transition. The collimation created a very bright beam of He∗ , allowing experiments of neutral atom lithography. The He∗ beam was used to pattern material surfaces using a resist-based lithography technique, where the pattern was determined by either mechanical or optical masks. The optical masks produced features with a separation of half the wavelength of the light used. Patterning was successfully demonstrated with both IR and UV optical masks. The etched pattern resolution was ∼ 100 nm and limited by the material surface. Further experiments were performed studying the ability of the bichromatic force to cool. The finite velocity range of the BF allows estimation of a characteristic cooling time which is independent of the excited state lifetime, only depending on the atomic mass and optical transition energy. Past experiments, including the helium collimation used for neutral atom lithography, have demonstrated that the BF can collimate and longitudinally slow atomic beams, but required long interaction times that included many spontaneous emission (SE) events. The effect of SE can be mitigated, and is predicted to not be necessary for BF cooling. Since the BF cooling time is not related to the excited state lifetime, a transition can be chosen such that the cooling time is shorter than the SE cycle time, allowing direct laser cooling on atoms and molecules that do not have cycling transitions. Experiments using the helium 2^{3}S− 3^{3}P transition were chosen because the BF cooling time (285 ns) is on the order of the average SE cycle time (260 ns). Numerical simulations of the experimental system were run predicting compression of the atomic velocity distribution. Our experimental results demonstrate the stimulated nature of the force through many atomic recoils from the light in less than one SE cycle time. A large range of the atomic velocity distribution is accelerated and accumulates at the velocity limit of the force. This accumulation results in an increase in the velocity space density, demonstrating cooling."},{"label":"dcterms.available","value":"2017-09-20T16:51:00Z"},{"label":"dcterms.contributor","value":"Anisimov, Petr."},{"label":"dcterms.creator","value":"Corder, Christopher Scott"},{"label":"dcterms.dateAccepted","value":"2017-09-20T16:51:00Z"},{"label":"dcterms.dateSubmitted","value":"2017-09-20T16:51:00Z"},{"label":"dcterms.description","value":"Department of Physics."},{"label":"dcterms.extent","value":"112 pg."},{"label":"dcterms.format","value":"Application/PDF"},{"label":"dcterms.identifier","value":"http://hdl.handle.net/11401/76689"},{"label":"dcterms.issued","value":"2014-12-01"},{"label":"dcterms.language","value":"en_US"},{"label":"dcterms.provenance","value":"Made available in DSpace on 2017-09-20T16:51:00Z (GMT). No. of bitstreams: 1\nCorder_grad.sunysb_0771E_12109.pdf: 19426437 bytes, checksum: 351a22eae77f1b13722a2539c49ee08a (MD5)\n Previous issue date: 1"},{"label":"dcterms.publisher","value":"The Graduate School, Stony Brook University: Stony Brook, NY."},{"label":"dcterms.subject","value":"Bichromatic Force, Laser Cooling, Metastable Helium"},{"label":"dcterms.title","value":"Optical Forces on Metastable Helium"},{"label":"dcterms.type","value":"Dissertation"},{"label":"dc.type","value":"Dissertation"}],"description":"This manifest was generated dynamically","viewingDirection":"left-to-right","sequences":[{"@type":"sc:Sequence","canvases":[{"@id":"https://repo.library.stonybrook.edu/cantaloupe/iiif/2/canvas/page-1.json","@type":"sc:Canvas","label":"Page 1","height":1650,"width":1275,"images":[{"@type":"oa:Annotation","motivation":"sc:painting","resource":{"@id":"https://repo.library.stonybrook.edu/cantaloupe/iiif/2/71%2F64%2F88%2F71648854865542682764701731844818117632/full/full/0/default.jpg","@type":"dctypes:Image","format":"image/jpeg","height":1650,"width":1275,"service":{"@context":"http://iiif.io/api/image/2/context.json","@id":"https://repo.library.stonybrook.edu/cantaloupe/iiif/2/71%2F64%2F88%2F71648854865542682764701731844818117632","profile":"http://iiif.io/api/image/2/level2.json"}},"on":"https://repo.library.stonybrook.edu/cantaloupe/iiif/2/canvas/page-1.json"}]}]}]}