{"@context":"http://iiif.io/api/presentation/2/context.json","@id":"https://repo.library.stonybrook.edu/cantaloupe/iiif/2/manifest.json","@type":"sc:Manifest","label":"Cis-regulatory contributions to the regulation of sloppy-paired 1 transcription initiation and elongation","metadata":[{"label":"dc.description.sponsorship","value":"This work is sponsored by the Stony Brook University Graduate School in compliance with the requirements for completion of degree."},{"label":"dc.format","value":"Monograph"},{"label":"dc.format.medium","value":"Electronic Resource"},{"label":"dc.identifier.uri","value":"http://hdl.handle.net/11401/71549"},{"label":"dc.language.iso","value":"en_US"},{"label":"dc.publisher","value":"The Graduate School, Stony Brook University: Stony Brook, NY."},{"label":"dcterms.abstract","value":"The expression of the sloppy-paired 1 (slp1) gene in the gastrula stage Drosophila embryo is controlled by the interplay of four transcription factors Runt, Even-skipped (Eve), Fushi-tarazu (Ftz), and Odd-paired (Opa) with two distinct cis-regulatory enhancer elements, the distal early stripe element (DESE) and the proximal early stripe element (PESE). The stripe pattern of slp1 is the result of non-additive interactions between these two enhancers and is context-dependent. Using chromatin immunoprecipitation (ChIP) to examine a number of reporter constructs, I found DESE mediates Runt dependent activation by facilitating pre-initiation complex formation on the slp1 promoter. This DESE-dependent activation is influenced by the extent of promoter- proximal DNA upstream of the transcription start site and involves a mechanism that induces nucleosome depletion around the promoter. This effect is specifically important for DESE activation but not PESE activation. ChIP experiments comparing wild-type versus repressed states of DESE-lacZ and PESE-lacZ reporter genes indicate that Eve represses PESE-lacZ expression by blocking the elongation step of the transcription cycle. This repression involves the regulated association of the elongation factor P-TEFb and phosphorylation of Ser2 in the C-terminal domain of RNA polymerase II. Runt and Ftz repress both DESE and PESE. Interestingly, Runt and Ftz repress DESE-lacZ by the same mechanism as Eve dependent repression of PESE, that is by inhibition of transcription elongation. However, Runt and Ftz repress PESE-lacZ by blocking transcription initiation. Analysis of the conserved domains of Runt revealed that C-terminal domain of Runt (region VIII) is involved in the repression of both DESE and PESE, and that this region is not required for activation of DESE."},{"label":"dcterms.available","value":"2015-04-24T14:47:52Z"},{"label":"dcterms.contributor","value":"Haltiwanger, Robert S"},{"label":"dcterms.creator","value":"Hang, Saiyu"},{"label":"dcterms.dateAccepted","value":"2013-05-24T16:38:22Z"},{"label":"dcterms.dateSubmitted","value":"2015-04-24T14:47:52Z"},{"label":"dcterms.description","value":"Department of Biochemistry and Structural Biology"},{"label":"dcterms.extent","value":"97 pg."},{"label":"dcterms.format","value":"Monograph"},{"label":"dcterms.identifier","value":"http://hdl.handle.net/11401/71549"},{"label":"dcterms.issued","value":"2012-08-01"},{"label":"dcterms.language","value":"en_US"},{"label":"dcterms.provenance","value":"Made available in DSpace on 2015-04-24T14:47:52Z (GMT). No. of bitstreams: 3\nStonyBrookUniversityETDPageEmbargo_20130517082608_116839.pdf.jpg: 1934 bytes, checksum: c116f0e1e7be19420106a88253e31f2e (MD5)\nStonyBrookUniversityETDPageEmbargo_20130517082608_116839.pdf.txt: 336 bytes, checksum: 84c0f8f99f2b4ae66b3cc3ade09ad2e9 (MD5)\nStonyBrookUniversityETDPageEmbargo_20130517082608_116839.pdf: 41286 bytes, checksum: 425a156df10bbe213bfdf4d175026e82 (MD5)\n Previous issue date: 1"},{"label":"dcterms.publisher","value":"The Graduate School, Stony Brook University: Stony Brook, NY."},{"label":"dcterms.subject","value":"Developmental biology--Molecular biology--Genetics"},{"label":"dcterms.title","value":"Cis-regulatory contributions to the regulation of sloppy-paired 1 transcription initiation and elongation"},{"label":"dcterms.type","value":"Dissertation"},{"label":"dc.type","value":"Dissertation"}],"description":"This manifest was generated dynamically","viewingDirection":"left-to-right","sequences":[{"@type":"sc:Sequence","canvases":[{"@id":"https://repo.library.stonybrook.edu/cantaloupe/iiif/2/canvas/page-1.json","@type":"sc:Canvas","label":"Page 1","height":1650,"width":1275,"images":[{"@type":"oa:Annotation","motivation":"sc:painting","resource":{"@id":"https://repo.library.stonybrook.edu/cantaloupe/iiif/2/38%2F04%2F35%2F38043571491748384940287584736793668057/full/full/0/default.jpg","@type":"dctypes:Image","format":"image/jpeg","height":1650,"width":1275,"service":{"@context":"http://iiif.io/api/image/2/context.json","@id":"https://repo.library.stonybrook.edu/cantaloupe/iiif/2/38%2F04%2F35%2F38043571491748384940287584736793668057","profile":"http://iiif.io/api/image/2/level2.json"}},"on":"https://repo.library.stonybrook.edu/cantaloupe/iiif/2/canvas/page-1.json"}]}]}]}