{"@context":"http://iiif.io/api/presentation/2/context.json","@id":"https://repo.library.stonybrook.edu/cantaloupe/iiif/2/manifest.json","@type":"sc:Manifest","label":"Bose Gases in Tailored Optical and Atomic Lattices","metadata":[{"label":"dc.description.sponsorship","value":"This work is sponsored by the Stony Brook University Graduate School in compliance with the requirements for completion of degree."},{"label":"dc.format","value":"Monograph"},{"label":"dc.format.medium","value":"Electronic Resource"},{"label":"dc.identifier.uri","value":"http://hdl.handle.net/1951/60252"},{"label":"dc.language.iso","value":"en_US"},{"label":"dc.publisher","value":"The Graduate School, Stony Brook University: Stony Brook, NY."},{"label":"dcterms.abstract","value":"Quantum degenerate atomic gases offer a unique platform for the exploration of a wide variety of interacting many-body systems in a pristine environment, based on a set of powerful tools for the coherent control of the atoms' internal and external degrees of freedom. Here, we present experimental studies of strongly interacting bosonic mixtures in one-dimensional (1D) systems, in which the mobilities of the two species are independently controlled with a state-selective optical lattice. In a first experiment, we freeze out the tunneling of one species from a binary mixture, and study the formation of ``quantum emulsion'' states, where immobile atoms serve as a static, random disorder for a more mobile species. We investigate the 1D superfluid-to-insulator transition in the presence of this disorder, and make comparisons to the effects of quasi-disorder from an incommensurate optical lattice. We observe enhanced localization in the more random potential, highlighting the important role of correlations in disordered systems. Through a combined measurement of transport, localization, and excitation spectra, we are able to obtain strong evidence for observation of a disordered, insulating quantum phase, the 1D Bose glass. In a second experiment, we introduce a new experimental technique for the characterization of ultracold gases held in optical lattices. In analogy to neutron diffraction from solids, we use atomic de Broglie waves to non-destructively probe the spatial structure of 1D Mott insulators through elastic Bragg diffraction, and to probe inelastic band-structure excitations of more weakly interacting 1D Bose gases. Furthermore, we use the diffraction of matter waves to detect the formation of forced-antiferromagnetic ordering in a crystalline atomic spin mixture. Lastly, we study the dynamical response of matter waves to a periodically pulsed, incommensurate optical lattice, a situation that realizes a system of two coupled kicked quantum rotors. We observe that the coupling induces a suppression of energy growth at quantum resonances, and a localization-to-delocalization transition in momentum space for off-resonant driving. Our observations confirm a long-standing theoretical prediction for the two-rotor system, and illustrate how classical behavior can emerge from the evolution of a simple quantum system."},{"label":"dcterms.available","value":"2013-05-24T16:38:18Z"},{"label":"dcterms.contributor","value":"Schneble, Dominik A,"},{"label":"dcterms.creator","value":"Gadway, Bryce Russell"},{"label":"dcterms.dateAccepted","value":"2015-04-24T14:47:46Z"},{"label":"dcterms.dateSubmitted","value":"2013-05-24T16:38:18Z"},{"label":"dcterms.description","value":"Department of Physics"},{"label":"dcterms.extent","value":"193 pg."},{"label":"dcterms.format","value":"Monograph"},{"label":"dcterms.identifier","value":"http://hdl.handle.net/1951/60252"},{"label":"dcterms.issued","value":"2012-08-01"},{"label":"dcterms.language","value":"en_US"},{"label":"dcterms.provenance","value":"Made available in DSpace on 2015-04-24T14:47:46Z (GMT). No. of bitstreams: 3\nStonyBrookUniversityETDPageEmbargo_20130517082608_116839.pdf.jpg: 1934 bytes, checksum: c116f0e1e7be19420106a88253e31f2e (MD5)\nStonyBrookUniversityETDPageEmbargo_20130517082608_116839.pdf.txt: 336 bytes, checksum: 84c0f8f99f2b4ae66b3cc3ade09ad2e9 (MD5)\nStonyBrookUniversityETDPageEmbargo_20130517082608_116839.pdf: 41286 bytes, checksum: 425a156df10bbe213bfdf4d175026e82 (MD5)\n Previous issue date: 1"},{"label":"dcterms.publisher","value":"The Graduate School, Stony Brook University: Stony Brook, NY."},{"label":"dcterms.subject","value":"Atomic physics--Quantum physics--Condensed matter physics"},{"label":"dcterms.title","value":"Bose Gases in Tailored Optical and Atomic Lattices"},{"label":"dcterms.type","value":"Dissertation"},{"label":"dc.type","value":"Dissertation"}],"description":"This manifest was generated dynamically","viewingDirection":"left-to-right","sequences":[{"@type":"sc:Sequence","canvases":[{"@id":"https://repo.library.stonybrook.edu/cantaloupe/iiif/2/canvas/page-1.json","@type":"sc:Canvas","label":"Page 1","height":1650,"width":1275,"images":[{"@type":"oa:Annotation","motivation":"sc:painting","resource":{"@id":"https://repo.library.stonybrook.edu/cantaloupe/iiif/2/15%2F92%2F66%2F159266881924136054502733692178657828223/full/full/0/default.jpg","@type":"dctypes:Image","format":"image/jpeg","height":1650,"width":1275,"service":{"@context":"http://iiif.io/api/image/2/context.json","@id":"https://repo.library.stonybrook.edu/cantaloupe/iiif/2/15%2F92%2F66%2F159266881924136054502733692178657828223","profile":"http://iiif.io/api/image/2/level2.json"}},"on":"https://repo.library.stonybrook.edu/cantaloupe/iiif/2/canvas/page-1.json"}]}]}]}