{"@context":"http://iiif.io/api/presentation/2/context.json","@id":"https://repo.library.stonybrook.edu/cantaloupe/iiif/2/manifest.json","@type":"sc:Manifest","label":"The Role of the Hemopexin Domain of Matrix Metalloproteinases in Cell Migration","metadata":[{"label":"dc.description.sponsorship","value":"This work is sponsored by the Stony Brook University Graduate School in compliance with the requirements for completion of degree."},{"label":"dc.format","value":"Monograph"},{"label":"dc.format.medium","value":"Electronic Resource"},{"label":"dc.identifier.uri","value":"http://hdl.handle.net/11401/70981"},{"label":"dc.language.iso","value":"en_US"},{"label":"dc.publisher","value":"The Graduate School, Stony Brook University: Stony Brook, NY."},{"label":"dcterms.abstract","value":"The biological functions of matrix metalloproteinases (MMPs) extend beyond extracellular matrix degradation. Non-proteolytic activities of MMPs are just beginning to become understood. The role of proMMPs in cell migration was herein evaluated using transfected COS-1 cells with various proMMP cDNAs employed in a Transwell chamber migration assay. Latent MMP-2 and MMP-9 enhanced cell migration to a greater extent than latent MMP-1,. 3,. 11 and. 28. To examine if proteolytic activity is required for MMP-enhanced cell migration, three experimental approaches including a fluorogenic substrate degradation assay, transfection of cells with catalytically inactive mutant of MMP cDNAs, and addition of MMP inhibitors were utilized. The mechanism underlying the non-proteolytic enhancement of cell migration by MMPs was evaluated by the structure-function relationship of MMP-9 on cell motility. A domain swapping approach was utilized to demonstrate the role of the hemopexin (PEX) domain of proMMP-9 in cell migration when examined by a Transwell chamber assay and by a phagokinetic assay. TIMP-1, which interacts with the PEX domain of proMMP-9, inhibited cell migration whereas TIMP-2 had no effect. Furthermore, using a biochemical approach, it was demonstrated that dimerization of MMP-9 through the PEX domain appears necessary for MMP-9-enhanced cell migration. Following a series of substitution mutations within the MMP-9 PEX domain, blade IV was shown to be critical for homodimerization, whereas blade I was required for heterodimerization with CD44. Both blade I and IV mutants showed diminished enhancement of cell migration compared to wild type MMP-9 transfected cells. Peptides mimicking motifs of the outermost strands of the first and fourth blades of the MMP-9 PEX domain were designed; these peptides efficiently blocked MMP-9 dimerization and inhibited motility of COS-1 cells overexpressing MMP-9, HT-1080 and MDA-MB-435 cells. Using a shRNA approach, CD44 was found to be a critical molecule in MMP-9-mediated cell migration. An axis involving an MMP-9-CD44-EGFR signaling pathway in cell migration was identified using an antibody array and specific receptor tyrosine kinase inhibitors. In conclusion, the mechanism by which proMMP-9 can enhance cell migration was dissected. Biochemical studies led to the development of structure-based inhibitory peptides, and small molecules targeting MMP-9-mediated cell migration."},{"label":"dcterms.available","value":"2012-05-15T18:03:07Z"},{"label":"dcterms.contributor","value":"Howard Crawford."},{"label":"dcterms.creator","value":"Dufour, Antoine Hugues-Olivier"},{"label":"dcterms.dateAccepted","value":"2012-05-15T18:03:07Z"},{"label":"dcterms.dateSubmitted","value":"2012-05-15T18:03:07Z"},{"label":"dcterms.description","value":"Department of Chemistry"},{"label":"dcterms.format","value":"Application/PDF"},{"label":"dcterms.identifier","value":"http://hdl.handle.net/1951/55415"},{"label":"dcterms.issued","value":"2010-12-01"},{"label":"dcterms.language","value":"en_US"},{"label":"dcterms.provenance","value":"Made available in DSpace on 2012-05-15T18:03:07Z (GMT). No. of bitstreams: 1\nDufour_grad.sunysb_0771E_10302.pdf: 9058086 bytes, checksum: 6dfd7114a4123e385e3cf85c308f567d (MD5)\n Previous issue date: 1"},{"label":"dcterms.publisher","value":"The Graduate School, Stony Brook University: Stony Brook, NY."},{"label":"dcterms.subject","value":"Chemistry, Pharmaceutical -- Biochemistry"},{"label":"dcterms.title","value":"The Role of the Hemopexin Domain of Matrix Metalloproteinases in Cell Migration"},{"label":"dcterms.type","value":"Dissertation"},{"label":"dc.type","value":"Dissertation"}],"description":"This manifest was generated dynamically","viewingDirection":"left-to-right","sequences":[{"@type":"sc:Sequence","canvases":[{"@id":"https://repo.library.stonybrook.edu/cantaloupe/iiif/2/canvas/page-1.json","@type":"sc:Canvas","label":"Page 1","height":1650,"width":1275,"images":[{"@type":"oa:Annotation","motivation":"sc:painting","resource":{"@id":"https://repo.library.stonybrook.edu/cantaloupe/iiif/2/15%2F07%2F17%2F150717794446113865966468561898372916765/full/full/0/default.jpg","@type":"dctypes:Image","format":"image/jpeg","height":1650,"width":1275,"service":{"@context":"http://iiif.io/api/image/2/context.json","@id":"https://repo.library.stonybrook.edu/cantaloupe/iiif/2/15%2F07%2F17%2F150717794446113865966468561898372916765","profile":"http://iiif.io/api/image/2/level2.json"}},"on":"https://repo.library.stonybrook.edu/cantaloupe/iiif/2/canvas/page-1.json"}]}]}]}